

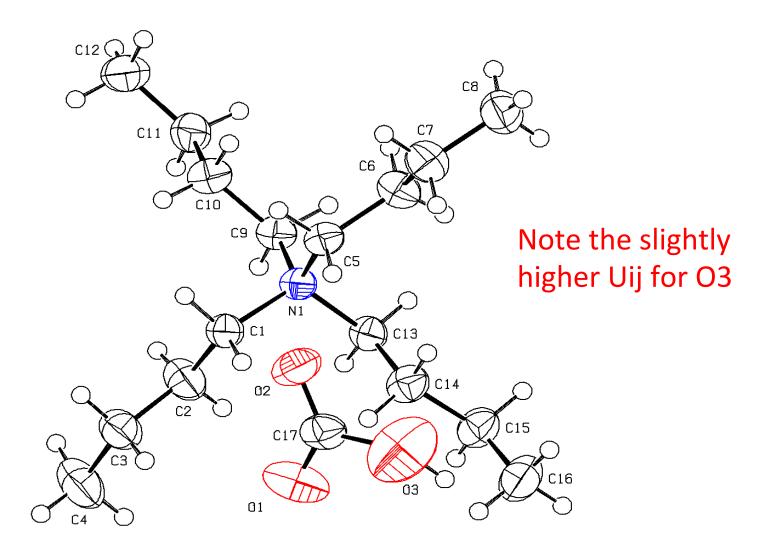
On the Proper Reporting and Archival of Crystal Structure Data

Ton Spek
Utrecht University, NL
(ACA2015-Philadelphia)

Summary Message

 Crystal structures should be published with their experimental (reflection) data archived

Two supporting examples follow

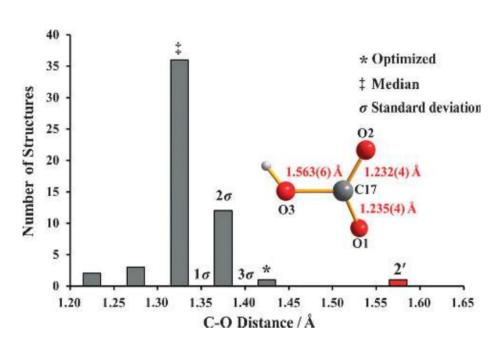

Boring Structure?

- Let me start with a story about a BORING looking published structure.
- The authors think that it is hot.
- Published in the high-impact journal Angew. Chem. Int. Ed.
 - 2015, 54, 164-168

Why an Interesting Structure?

- Title: "Crystallographic Snapshot of an Arrested Intermediate in the Biomimetic Activation of CO₂"
- Product of the bubbling of CO₂ through a solution of n-tetrabutylammonium hydroxide
- $[N(C_4H_9)_4]^+[OH]^- + CO_2 \rightarrow [N(C_4H_9)_4]^+[HCO3]^-$
- Study motivated by CO₂ fixation/conversion research.

Tetrabutylammonium Hydrogencarbonate


Author's interpretation of the experimental data

Selected Validation Issues

```
\beta75_ALERT_2_A Strange C-O-H Geometry (C-O > 1.45 Ang) ....
                                                                03 Check
420 ALERT 2 B D-H Without Acceptor
                                     03
                                               Н3
                                                            Please Check
222 ALERT 3 C Large Non-Solvent H
                                  Uiso(max)/Uiso(min) ...
                                                               6.1 Ratio
244_ALERT_4_C Low 'Solvent' Ueg as Compared to Neighbors of
                                                               C17 Check
340_ALERT_3_C Low Bond Precision on C-C Bonds ......
                                                            0.0056 Ang.
1.13 Ang.
005_ALERT_5_G No _iucr_refine_instructions_details in the CIF
                                                            Please Do !
008_ALERT_5_G No _iucr_refine_reflections_details
                                                            Please Do !
                                              in the CIF
860_ALERT_3_G Number of Least-Squares Restraints .....
                                                                 1 Note
```

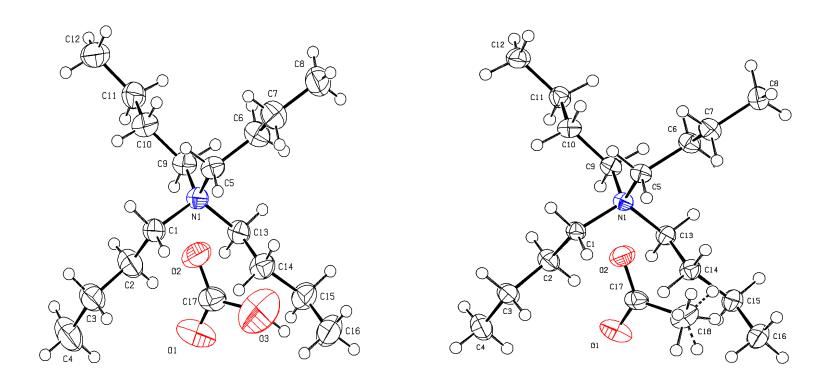
```
U_{iso} (H3) = 0.9 ANG**2 !!
```

Interpretation Issues

Figure 2. Distribution of C \rightarrow O(H) bond lengths in all structures containing non-ligating HCO $_3$ ⁻ ions (72 hits from 55 structures) obtained from a survey of the CSD, along with the CCSD/6-311G(d,p) optimized HCO $_3$ ⁻ ion.

The authors noticed that:

- O3-H without acceptor
- The unusually long C17-O3 bond of 1.563(6) Ang.


But interpreted that as: "H-O...CO₂, stabilized by interactions with the cation scaffold"

Referees accepted that strange argument
No reflection data were deposited for independent evaluation
Acetate anion might fit as well

A few month's later ...

- A paper appeared entitled: 'Comment on "Crystallographic Snapshot of an Arrested Intermediate in the Biomimetic Activation of CO₂" by J.A.C. Clyburn et al. (2015). Angew. Chem., 54, 7484-7487.
- New data collection with acetate as anion => The previously described mystery species is likely a common acetate ion (O-H → CH₃)
- Now supported by deposited reflection data in SHELXL2014 format

Comparison of the 'hydrogen carbonate' and acetate structures

Observe the close resemblance of the displacement ellipsoids

Contoured CH₃ density section in the acetate structure

We would expect to see a similar section prepared with the "HCO₃" data

Last Month 'Update'

Angewandte Corrigendum

Crystallographic Snapshot of an Arrested Intermediate in the Biomimetic Activation of CO₂

S. L. Ackermann, D. J. Wolstenholme,*

C. Frazee, G. Deslongchamps,

S. H. M. Riley, A. Decken,

G. S. McGrady* _____ 164-168

Angew. Chem. Int. Ed. 2015, 54

DOI: 10.1002/anie.201407165

The authors of this Communication now believe that a single crystal of a $[(n-C_4H_9)_4N]^+[CH_3CO_2]^-$ impurity in their bulk sample was misidentified as $[(n-C_4H_9)_4N]^+[O_2C\cdots OH]^-$ in their original report. This was interpreted as an arrested intermediate in the base-mediated activation of CO_2 , indicating an egregiously long $C^-O(H)$ bond that is in fact the C^-C bond of the $[CH_3CO_2]^-$ salt. However, the biomimetic nature of the hydrophobic pockets in $[(n-C_4H_9)_4N]^+[CH_3CO_2]^-$ still offers valuable insights into the substrate binding sites in human carbonic anhydrase II, since the geometry of the weak hydrogen bonding is identical to the interactions that tether CO_2 to the pockets of this metalloenzyme. Moreover, the computational component of the original study revealed a three-stage process for the base-mediated activation of CO_2 , which is independent of the experimental structural study.

Afterall a dull structure
but perfectly illustrating my message

By-the-way, where did the acetate anion come from?

Important Message

- Unusual structural features are most likely wrong
- A reported crystal structure (i.e. coordinates and atom type assignment) is just the authors interpretation of the data and open for debate
- Deposition of the data is needed to prove/disprove an authors interpretation (by referees and readers)
- Not all chemical journals enforce the good scientific practice of the deposition of the reflection data yet
- Programs like SHELXL2014 now automatically include the reflection data in the deposited CIF. Those data should not be deleted for whatever reason

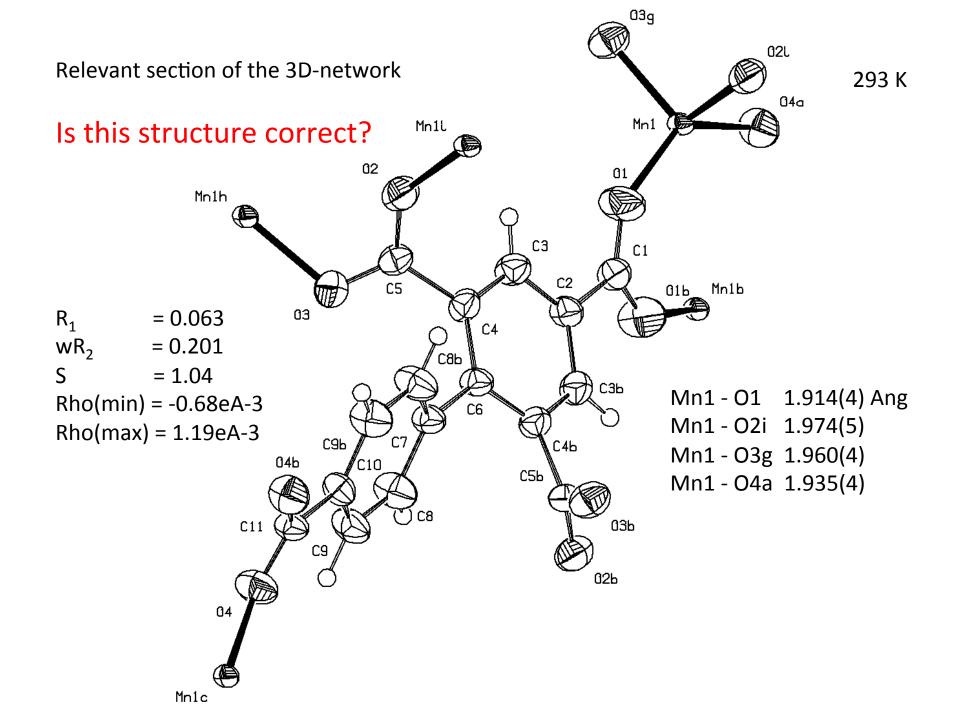
Deposition/Archival

- The IUCr journals require as a minimum the deposition of Fo/Fc data. Better now: include the unmerged reflection data into the CIF.
- Some programs do that now automatically, including the refinement instructions.
- The CCDC is now fully equipped and happy to accept reflection data for archival.
- Private communications to the CCDC should include reflection data to make more sense.

Structure Validation

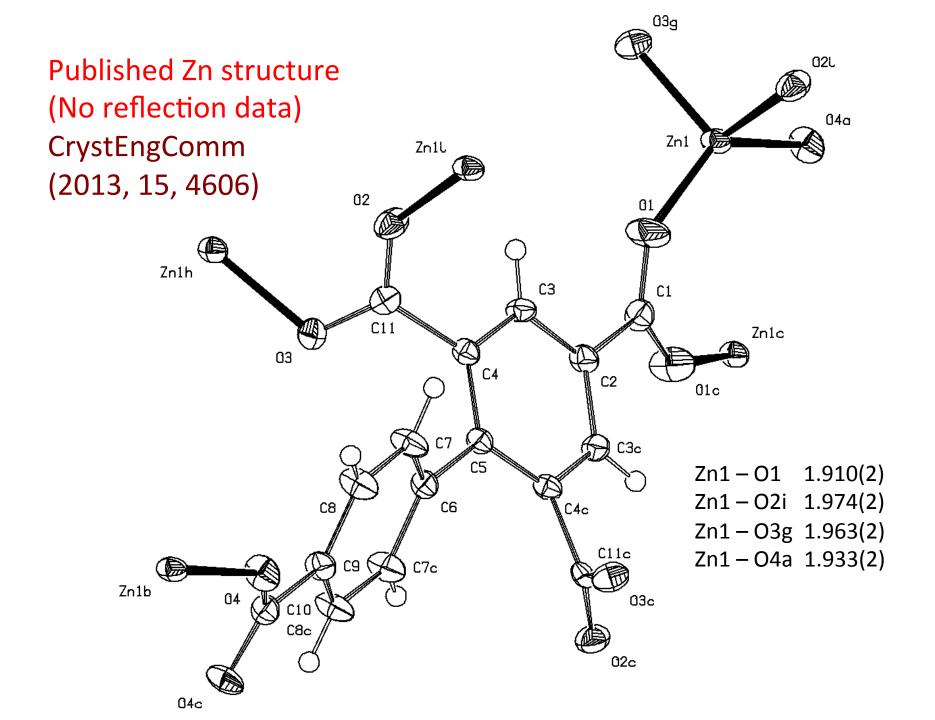
- A crystal structure needs to be fully validated before publication on the basis of both the refinement results and experimental (reflection) data on which they are based.
- Tools available to authors, referees and readers should include checkCIF, the Cambridge Crystallographic database, a rerefinement program and very important: chemical knowledge
- All non-standard procedures used (e.g. constraints/restraints, disorder, SQUEEZE) should be sufficiently detailed in a structure report
- All unusual structural features should be investigated and discussed in sufficient detail.
- A refereeing example of an actual structure report follows.

A Structure Report submitted to Acta Cryst. C (2015)


Title: "The synthesis and DFT calculation of a four-coordinated manganese compound Mn₂(BPTC)".

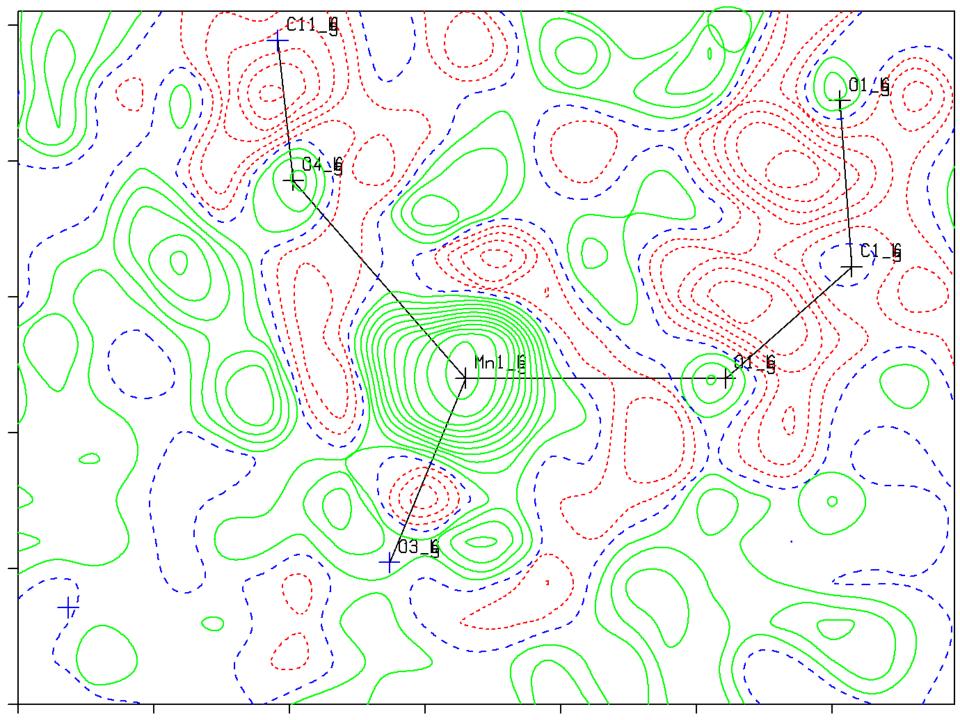
Mn

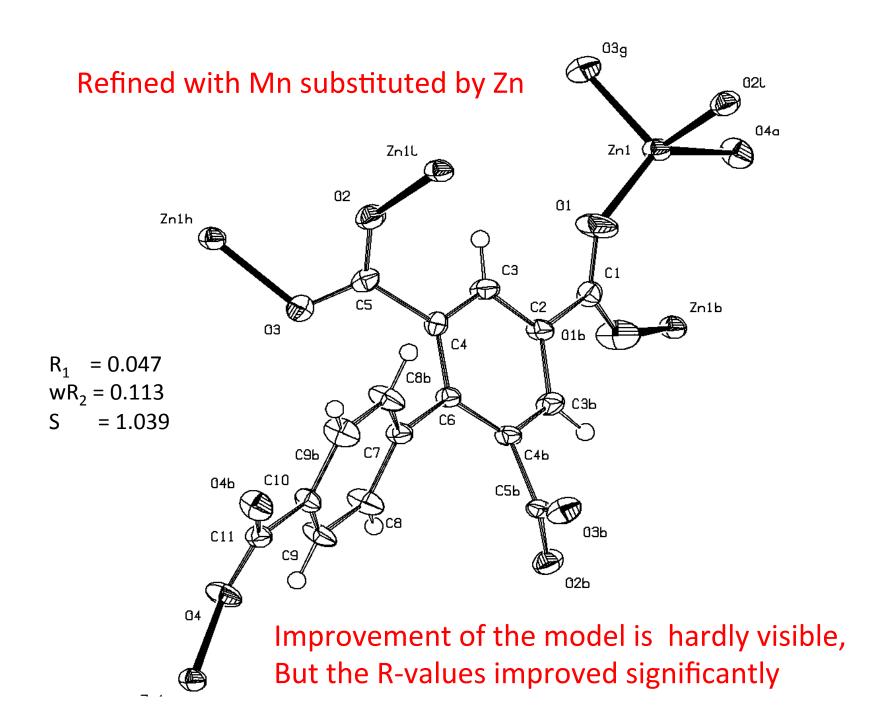
Mn


• 3D-Network

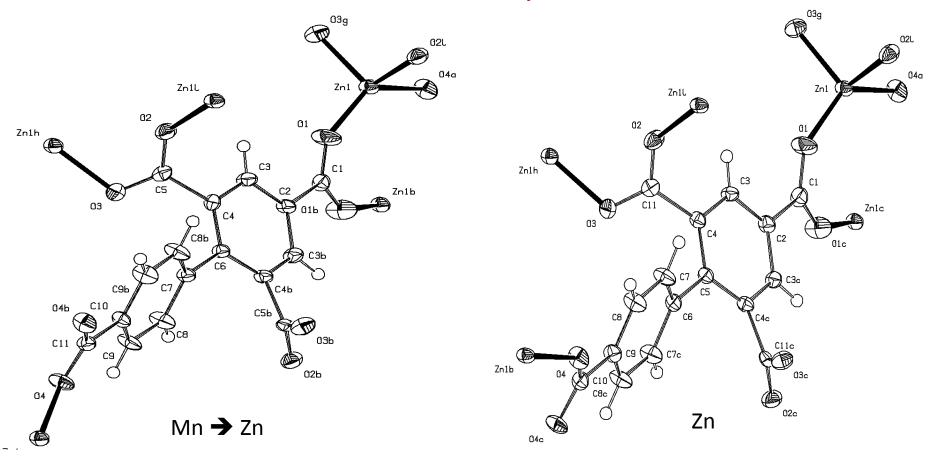
• Prepared in a stainless steel reactor at 443K from Mn(ClO₄)₂.6H₂O + H₄BPTC ligand.

CSD-Search


- The Mn 4-coordination is somewhat unusual:
- Coordination generally square planar rather than tetrahedral.
- An isomorphous Zn complex was reported previously (no deposited reflection data, thus no comparison of reflection data possible)
- The coordination around Zn closely fits the one of the Mn complex



checkCIF


- What can checkCIF tell us about the Mn complex?
- Also, always inspect the difference density map for unusual features

973_ALERT_2_B Check Calcd Positive Residual Densit	ty on Mn1	1.55	eA-3
241_ALERT_2_C High Ueq as Compared to Neighbors 341_ALERT_3_C Low Bond Precision on C-C Bonds 430_ALERT_2_C Short Inter DA Contact 02 790_ALERT_4_C Centre of Gravity not Within Unit Centre of Gravity not Within Unit Centre 241_ALERT_4_C Centre 241_ALERT_4_ALERT_	. 04	0.0080 2.88	_
C8 H3 Mn O4 976_ALERT_2_C Check Calcd Residual Density 0.63A 976_ALERT_2_C Check Calcd Residual Density 0.77A #===================================		-0.56 -0.54	
004_ALERT_5_G Polymeric Structure Found with Maxim 008_ALERT_5_G No _iucr_refine_reflections_details 042_ALERT_1_G Calc. and Reported MoietyFormula Structure Found with Maxim 045_ALERT_1_G Calculated and Reported Z Differ by 072_ALERT_2_G SHELXL First Parameter in WGHT Unus 164_ALERT_4_G Nr. of Refined C-H H-Atoms in Heavy-199_ALERT_1_G Reported _cell_measurement_temperate 200_ALERT_1_G Reporteddiffrn_ambient_temperate 232_ALERT_2_G Hirshfeld Test Diff (M-X) Mn1232_ALERT_2_G Hirshfeld Test Diff (M-X) Mn2232_ALERT_2_2_G Hirshfeld Test Diff (M-X) Mn2	in the CIF rings Differ sually LargeAtom Struct. ure (K) - 01 04_a 03_g (Rep/Expd) V Th(Min)	Please Please 2.00 0.11 1 293 293 5.3 8.5 8.5 6.0 1.35	Check Ratio Report Note Check Check su su
			_

Structure Comparison

The displacement ellipsoids are surprisingly similar (both RT) Unfortunately, the two reflection sets can not be compared Paper rejected!

Common checkCIF Issues

- ADDSYM is designed to warn for possible higher symmetry between the supplied coordinate set with a suggestion for a revised space group. The tolerances used are relatively high in order to catch most known misassignments. An ALERT not necessarily means an error, just something to investigated and reported on.
- With multiple components in the unit cell or with polymers it is not always clear what the best choise is for the formula unit. CheckCIF might make a different choise than an author on the basis of chemical insight. The main issue is that the reported Z and related quantities are consistent with the reported formula unit.
- CheckCIF uses its own f' and f'' anomalous dispersion parameter values for a synchrotron based wavelength as a check against those supplied. The actual values can be listed with the ANOM <wavelength> instruction in PLATON.
- Details on missing reflection and outlier ALERTS can be found in the FCF validation report.

Missing Reflections (Asym. Refl. Unit) below sin(th)/lambda = 0.5

Nr	Н	K	L	sin(th)/lambda	Theta	I(calc)	I(calc)/I(max)
1	0	2	0	0.051	2.10*	23.09	0.00029
2	1	3	0	0.097	3.95	168.56	0.00209
3	-1	5	1	0.148	6.02	307.55	0.00381
4	6	10	1	0.443	18.37	2760.21	0.03422
5	-1	1	2	0.113	4.59	146.91	0.00182
6	0	1	2	0.103	4.19	1183.75	0.01468
7	-1	3	2	0.134	5.47	1582.16	0.01962
8	-4	14	3	0.446	18.49	30.64	0.00038
9	-5	14	4	0.492	20.47	2085.30	0.02585
10	-3	1	7	0.373	15.35	894.30	0.01109
11	-2	3	7	0.363	14.94	93.44	0.00116

** Note: I(max) is the maximum I(obs) encountered in the fcf-file **

Starred Reflections have a Theta below Theta(Min) = 2.28

From CIF: Theta(Min) = 2.28

Section 4:

36001011 -	+. 							
Resolution	on & Comple	eteness Stat	istics (C	umulative	and Friedel	Pairs Aver	aged)	
Theta sir	n(th)/Lambo	da Complete	Expected	Measured	Missing			
20.82	0.500	0.994	1748	1737	11			
23.01	0.550	0.994	2340	2327	13			
25.24	0.600	0.994	3035	3016	19			
						ACTA Min.	Res	
26.01	0.617	0.994	3300	3280	20			

PLATON-(Version 270714)-Mode=2 FCF-File Validation for:I

For Documentation: http://www.platonsoft.nl/FCF-VALIDATION.pdf

Section 1

General Data

Crystal Data From: zl2039.cif

Fo/Fc Data From: zl2039.fcf FCF-TYPE=LIST4

Space Group : P21/n

Wavelength (Ang): 0.71073

Unit Cell (CIF) : 8.5814 19.4260 10.1180 90.000 96.620 90.000

SHELX WGHT Pars.: 0.0336 0.0000

Section 2

Reflections with abs((I(obs) - I(calc)) / SigW(I) \cdot GT. 3.0

Nr	Н	K	L	Theta	I(obs)	I(calc)	Sigma(I)	Ratio	SigW(I)	RatioW
1	8	6	0	20.56	89.20	155.04	20.77	-3.17	21.25	-3.10
2	4	7	0	12.14	102.88	64.92	11.25	3.37	11.55	3.29
3	-1	0	3	6.28	782.69	674.72	26.62	4.06	35.76	3.02
4	0	4	3	7.40	485.61	590.60	24.33	-4.32	30.67	-3.42
5	8	6	4	23.12	-11.16	29.85	13.62	-3.01	13.64	-3.01
6	4	13	5	20.48	528.19	400.54	39.70	3.22	42.40	3.01
7	1	15	7	22.03	94.71	177.93	26.92	-3.09	27.39	-3.04

6 2 9 25.37 723.80 1021.52 91.48 -3.25 96.59 -3.08

Average =
$$-0.77$$

-0.79

Concluding Remarks

- CheckCIF is intended to be helpful and to protect against oversights rather than being annoying
- Many ALERTS have their origin in previous 'incidents'
- Some ALERTS can point to interesting features in a structure and relevant to be discussed
- Some ALERTS may be less important in a given context
- Sometimes, a combination of minor ALERTS can point to a problem that needs to be resolved
- The set of ALERTS is still fine tuned and extended on the bases of reported new 'incidents'.
- Please send suggestions and examples of annoying issues to a.l.spek@uu.nl

Thanks!

<u>a.l.spek@uu.nl</u> www.platonsoft.nl