Automated Crystal Structure Validation

Ton Spek,

National Single Crystal Facility, Utrecht University, Utrecht, The Netherlands

Platon Workshop Chicago, 24-July-2010.

Why Automated Structure Validation ?

- It is easy to miss problems with a structure as a busy author or as a referee
- Increasingly: Black-Box style analyses done by non-experts
- Limited number of referees & experts available
- It is easy to hide problems with a ball-and-stick style illustration
- Sadly, Fraudulous results and structures published and in the CSD
- Even an ORTEP can hide problems =>

The CIF Standard Solution

- The IUCr Automated Structure Validation project was pioneered and 'pushed' by Syd Hall, at that time section editor of Acta Cryst C. by:
- The creation of the CIF Standard for data archival and exchange (Hall et al., (1991) Acta Cryst., A47, 655-685.
- Having CIF adopted by Sheldrick for SHELXL93
- Making CIF the Acta Cryst. submission standard
- Setting up early CIF checking procedures for Acta
- Inviting me to include PLATON checking tools such as ADDSYM and VOID search.

WHAT ARE THE VALIDATION QUESTIONS ?

Single Crystal Structure Validation addresses three simple but important questions:

- 1 -Is the reported information complete?
- 2 What is the quality of the analysis?
- 3 Is the Structure Correct?

How is Validation Currently Implemented ?

- Validation checks on CIF data can be executed at any time, both in-house (PLATON/CHECK) or through the WEB-based IUCr CHECKCIF server.
- A file, check.def, defines the issues that are tested (currently more than 400) with levels of severity and associated explanation and advise. (www.cryst.chem.uu.nl/platon/CIF-VALIDATION.pdf)
- Most non-trivial tests on the IUCr CheckCIF server are executed with routines in the program PLATON. (Identified as PLATxyz)

VALIDATION ALERT LEVELS

CheckCIF/PLATON creates a report in the form of a list of ALERTS with the following ALERT levels:

- ALERT A Serious Problem
- ALERT B Potentially Serious Problem
- ALERT C Check & Explain
- ALERT G Verify or Take Notice

VALIDATION ALERT TYPES

- CIF Construction/Syntax errors, Missing or Inconsistent Data.
- 2 Indicators that the Structure Model may be Wrong or Deficient.
- 3 Indicators that the quality of the results may be low.
- 4 Info, Cosmetic Improvements, Queries and Suggestions.

PLATON/CHECK CIF + FCF Results

>>>> The Following Model and Quality ALERTS were generated -	· (Acta-Mode) <<<
Format: alert-number_ALERT_alert-type_alert-level text	
148_ALERT_3_B su on thea- Axis is Too Large (x 1000)148_ALERT_3_B su on theb- Axis is Too Large (x 1000)148_ALERT_3_B su on thec- Axis is Too Large (x 1000)230_ALERT_2_B Hirshfeld Test Diff for01230_ALERT_2_B Hirshfeld Test Diff for02242_ALERT_2_B Check LowUeq as Compared to Neighbors for420_ALERT_2_B D-H Without Acceptor01-#	10 Ang. 8 Ang. 30 Ang. 26.27 su 11.10 su C1 ?
230_ALERT_2_C Hirshfeld Test Diff for C1 C2 242_ALERT_2_C Check Low Ueq as Compared to Neighbors for 911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.595 913_ALERT_3_C Missing # of Very Strong Reflections in FCF	6,87 su C11 11 1
#	2
>>>> The Following Improvement and Query ALERTS were generated -	· (Acta-Mode) <<<
926_ALERT_1_B Reported and Calculated R1 * 100.0 Differ by . 927_ALERT_1_B Reported and Calculated wR2 * 100.0 Differ by .	-0,81 -2,26
<pre>#====================================</pre>	-0.13
<pre>#====================================</pre>	P21/n

🙋 (IUCr) Structure Reports Online author services - Iceweasel		
<u>F</u> ile <u>E</u> dit <u>V</u> iew Hi <u>s</u> tory <u>B</u> ookmarks <u>T</u> ools <u>H</u> elp		
🔶 🗼 🔻 😂 🚳 🏠 🚟 http://journals.iucr.org/e/services/authorser	rvices.html	☆ Google
🛅 Most Visited 🔻 🌸 Getting Started 🔝 Latest Headlines 🔻		
Structure Reports Online	Journals <mark>Online</mark> search help subscribe	supplementary files contact us terms of use site index

checkCIF/PLATON report (publication check)

No syntax errors found. Please wait while processing <u>CIF dictionary</u> <u>Interpreting this report</u>

Datablock: I

Bond precis:	ion: C-	·C = 0.0157 A	Wavelength=0.71073
Cell:	a=7.6336(15)	b=27.725(6)	c=12.051(2)
	alpha=90	beta=98.80(3)	gamma=90
Temperature	:153 K		
	Cald	culated	Reported
Volume	2520	0.5(9)	2520.5(9)
Space group	P 21	l/n	P 21/n
Hall group	-P 2	2yn	-P 2yn
Moiety formula C28 H32 Br0.97 Cll.03		H32 Br0.97 Cl1.03 N2 H	Ru C28 H32 Br0.97 Cl1.03 N2 Ru
Sum formula	C28	H32 Br0.97 Cl1.03 N2 F	Ru C28 H32 Br0.97 Cl1.03 N2 Ru
Mr	611	. 69	611.69
Dx,g cm-3	1.61	12	1.612
Z	4		4
Mu (mm-l)	2.29	90	2.290
F000	1237	7.9	1237.9
F000'	1232	2.67	
h,k,lmax	9,33	3,14	9,33,14
Nref	4452	2	4449
Tmin,Tmax	0.72	26,0.955	0.581,0.955
Tmin'	0.54	46	
Correction r	method= MULTI-	SCAN	
Data comple [.]	teness= 0.999	Theta(max)=	25.030
R(reflection	ns)= 0.0891(3	288) wR2(refl	.ections)= 0.2547(4449)
S = 1.037		Npar= 306	
		·	
The followir	na ALERTS were	generated. Each ALERT	has the format
test	-name_ALERT_al	ert-type_alert-level	
Click on the	e hyperlinks f	or more details of the	test.
Alert les	vol B		
	T 2 R SHELVI	Second Parameter in WG	
		Second Farameter In Wo	in andoacty Large. 57.00
Alert lev Alert l	vel C		
RFACR01_ALEF	RT <u>3C</u> The va	lue of the weighted R	factor is > 0.25
	Weighted R fa	ctor given 0.255	
PLAT301 ALEP	RT 3 C Main Re	sidue Disorder	6.00 Perc.
Done			

Which Key Validation Issues are Addressed

- Missed Space Group symmetry ("being Marshed")
- Wrong chemistry (Mis-assigned atom types).
- Too many, too few or misplaced H-atoms.
- Unusual displacement parameters.
- Hirshfeld Rigid Bond test violations.
- Missed solvent accessible voids in the structure.
- Missed Twinning.
- Absolute structure
- Data quality and completenes.

Some Relevant ALERTS

Wrong atom type assignments generally cause:

- Serious Hirshfeld Rigid Bond Violation ALERTS
- Larger than expected difference map minima and maxima.
- wR2 >> 2 * R1
- High values for the SHELXL refined weight parameter

Evaluation and Performance

- The validation scheme has been very successful for Acta Cryst. C & E in setting standards for quality and reliability.
- The missed symmetry problem has been solved for the IUCr journals (unfortunately not generally yet: There are still numerous 'Marshable' structures).
- Most major chemical journals currently have now some form of a validation scheme implemented.
- Recently included: FCF validation

FCF-VALIDATION

- Check of the CIF & FCF data Consistency (including R-values, cell dimensions)
- Check of Completeness of the reflection data set.
- Automatic Detection of ignored twinning
- Detection of Applied Twinning Correction without having been Reported in the paper.
- Validity check of the reported Flack parameter value against the Hooft parameter value.
- Analysis of the details of the Difference Density Fourier Map for unreported features.

Sloppy, Novice or Fraudulent?

- Errors are easily made and unfortunately not always discernable from fraud.
- Wrong element type assignments can be caused as part of an incorrect analysis of an unintended reaction product.
- Alternative element types can be (and have been) substituted deliberately to create a 'new publishable' structures.
- Reported and calculated R-values differing in the first relevant digit !?
- FCF Validation is the tool to sort out this type of issues.

- However: This structure does not include a dicarboxylic acid but the previously published para-nitrobenzoic acid.
- PROOF: Difference map calculated without the 2 carboxylic H-atoms

There are clear ALERTS ! But apparently ignored

>>> The Following Model and Quality ALERTS were generated -	(Acta-Mode) <<<				
Format: alert-number_ALERT_alert-type_alert-level text					
148_ALERT_3_B su on thea - Axis is Too Large (x 1000) .148_ALERT_3_B su on theb - Axis is Too Large (x 1000) .148_ALERT_3_B su on thec - Axis is Too Large (x 1000) .230_ALERT_2_B Hirshfeld Test Diff for01 C1230_ALERT_2_B Hirshfeld Test Diff for02 C1242_ALERT_2_B Check LowUeq as Compared to Neighbors for420_ALERT_2_B D-H Without Acceptor01 - H1	10 Ang. 8 Ang. 30 Ang. 26.27 su 11.10 su C1 ?				
<pre>#</pre>	6,87 su C11 11 1				
#	2				
# #					
>>> The Following Improvement and Query ALERTS were generated - (Acta-Mode) <<<					
926_ALERT_1_B Reported and Calculated R1 * 100.0 Differ by . 927_ALERT_1_B Reported and Calculated wR2 * 100.0 Differ by .	-0,81 -2,26				
<pre>#====================================</pre>	? 2				
928_ALERT_1_C Reported and Calculated S value Differ by .	-0,13				
#	P21/n				

The Ultimate Shame

- Recently a whole series of 'isomorphous' substitions was detected for an already published structure.
- Similar series have now been detected for coordination complexes (Transition metals and lanthanides)
- How could referees let those pass ?
- Over 100 structures now retracted
- Fraud detected by looking at all papers of the same authors of a 'strange' structure (and their institutions)

BogusVariations (with Hirshfeld ALERTS) on the Published Structure 2-hydroxy-3,5-nitrobenzoic acid (ZAJGUM)

Comparison of the Observed data for two 'isomorphous' compounds.

Tool: platon –d name1.fcf name2.fcf

Conclusion The Same Data ! SLOPPY Or FRAUD ?

Info

www.cryst.chem.uu.nl/platon/CIF-VALIDATION.pdf www.cryst.chem.uu.nl/platon/FCF-VALIDATION.pdf

- Papers on structure validation:
- A.L.Spek (2003). J. Appl. Cryst. 36, 7-13.
- A.L.Spek (2009). Acta Cryst. D65, 148-155.